

# Following Natural Disturbance Regimes as a Guide for Sustainable Forest Management





# Oak forests as habitats







# Oak forests as habitats









- monocultures
- even-aged structure
- absence of large, veteran trees, habitat trees, microhabitats
- low amount of deadwood
- absence of natural dynamics







Photo: László Gálhidy

Consequences of conventional management on habitat functions

- Simple structure and species composition
- Lack of microhabitats
  - large sized trees, and cavities
  - root plates,
  - standing and downed deadwood



I would like to see something like this:















# Forests of Hungary



- Fifth of Hungary's area (2 million hectars)
- 50% semi-natural forests (~natural species non-natural stucture)
- 50% are cultivated forests, plantations
- 95% is managed

Forrás: <a href="https://hu.maps-hungary.com/magyarorsz%C3%A1g-erd%C5%91k-t%C3%A9rk%C3%A9p">https://hu.maps-hungary.com/magyarorsz%C3%A1g-erd%C5%91k-t%C3%A9rk%C3%A9p</a>



# Silvicultural systems of Europe

boreal and hemiboreal: Sweden, Finland, Latvia temperate: France, Poland, Germany, Austria, Hungary, Slovakia, Czechia, Romania, Slovenia, Italy



Réka Aszalós, Dominik Thom, ..., William S. Keeton 2022 Ecological Applications: Natural disturbance regimes as a guide for sustainable forest management in Europe



# Silvicultural systems of Europe







# Motivation: Homogenous structure and composition of Natura 2000 oak forests

### Management of oak dominated forests in temperate Europe

| Quercus<br>spp.     | ha      | Uniform<br>shelterwoo<br>d systems | Clearcuttin<br>g systems | Uneven-<br>aged<br>systems | Coppice<br>systems |
|---------------------|---------|------------------------------------|--------------------------|----------------------------|--------------------|
| Temperate<br>Europe | ~10 Mha | 49%                                | 15%                      | 4%                         | 32%                |
| Hungary             | 590.000 | 50%                                | 48%                      | 1-2%                       | -                  |
| Italy               | ~2 Mha  | 3%                                 | 0                        | 25%                        | 72%                |



Réka Aszalós, Dominik Thom, ..., William S. Keeton 2022 Ecological Applications: Natural disturbance regimes as a guide for sustainable forest management in Europe



# Motivation: Homogenous structure and composition of Natura 2000 oak forests

### Management of oak dominated forests in temperate Europe

| Quercus<br>spp.     | ha      | Uniform<br>shelterwoo<br>d systems | Clearcuttin<br>g systems | Uneven-<br>aged<br>systems | Coppice<br>systems |
|---------------------|---------|------------------------------------|--------------------------|----------------------------|--------------------|
| Temperate<br>Europe | ~10 Mha | 49%                                | 15%                      | 4%                         | 32%                |
| Hungary             | 590.000 | 50%                                | 48%                      | 1-2%                       | -                  |
| Italy               | ~2 Mha  | 3%                                 | 0                        | 25%                        | 72%                |



Réka Aszalós, Dominik Thom, ..., William S. Keeton 2022 Ecological Applications: Natural disturbance regimes as a guide for sustainable forest management in Europe



# Motivation: Homogenous structure and composition of Natura 2000 oak forests

### Management of oak dominated forests in temperate Europe

| Quercus<br>spp.     | ha      | Uniform<br>shelterwoo<br>d systems | Clearcuttin<br>g systems | Uneven-<br>aged<br>systems | Coppice<br>systems |
|---------------------|---------|------------------------------------|--------------------------|----------------------------|--------------------|
| Temperate<br>Europe | ~10 Mha | 49%                                | 15%                      | 4%                         | 32%                |
| Hungary             | 590.000 | 50%                                | 48%                      | 1-2%                       | -                  |
| Italy               | ~2 Mha  | 3%                                 | 0                        | 25%                        | 72%                |



Réka Aszalós, Dominik Thom, ..., William S. Keeton 2022 Ecological Applications: Natural disturbance regimes as a guide for sustainable forest management in Europe

# Kasivarova - SK

References

Photos: Réka Aszalós

Drastvica - SK





# Hungarian, sanctuary forests'



Photos: Réka Aszalós



# Hungarian, sanctuary forests'





# Hungarian, sanctuary forests'







# Hungarian ,sanctuary forests'





# Our Life4Oak Forests Project

# Conservation management tools for increasing structural and compositional biodiversity in Natura 2000 oak forests

Starting date: 07/2017, end date: 12/2026





- A protected area (IT), 3 national parks (HU)
- 5 Natura 2000 oak dominated forest habitats
- 24 sites
- 2000 ha+







Enhancement of structural and compositional biodiversity of EU priority oak forests







Why we need such interventions?

To achieve wider microhabitat availability for common and rare species

The healthier, resilient a forest provides a more complete scope of Ecosystem Services





Creation of circular and ellipsoid 65-400 m2 gaps – all deadwood material retained – 2020/2021













Open gaps with the creation of downed trees and snags

Creation of standing dead tree with girdling







Creation of high stumps for special microhabitats



Bark stripping for special microhabitats – creation of wounded trees



## Rapid utilization of hanging barks by treecreapers and bats















Fast colonization – feeding signs of woodpeckers



G. t. = Girdled tree,

F. t. = Felled tree,

L. s. = Low stump,

T. s. = Tall stump,

D. t. = Damaged tree

Aszalós, R., Szigeti, V., Harmos, K., Csernák, S., Frank, T., & Ónodi, G. (2020). Foraging activity of woodpeckers on various forms of artificially created deadwood. *Acta Ornithologica*, *55*(1), 63-76.





Downed trees are used as routes and marking sites for wildcats, foxes, martens, etc.







# Before-After









# Experimental sites



19 sites of Life 4 Oak Forests in 3 Hungarian national parks

8 experimental sites



# Experimental sites

- ♦ 8 replicates in 3 Hungarian national parks
- ❖ Control plot no treatment
- ❖ Treatment plot = Gap + deadwood enrichment
- Survey of forest stand, butterflies, flower chafers, vascular plants, fungi, carabids, saproxylophaous insects, mosses and lichens, woodpecker response





Control

Gap + deadwood

- \_\_\_\_ downed tree
  - standing dead tree
- high stump
- wounded tree







avr. <u>number</u> of individuals

### 4.2. Insects - butterflies





Hipparchia fagi







Maniola jurtina







### 4.2. Insects – flower chafers

avr. number of individuals





Cetonia aurata

avr. species number





Protosia cuprea



The number of species and abundance of bryophytes have increased in treated plots

The number of species and abundance of lichens have only slightly increased in treated plots





# Team work is essential





# Potential use of treatments in forest management



Diversity enhances resilience! → climate adaptation!





# Thank you for your attention



Pál Bódis

Forest program project coordinator

WWF Hungary

pal.bodis@wwf.hu





















